Important notice

Dear Customer,
On 7 February 2017 the former NXP Standard Product business became a new company with the tradename Nexperia. Nexperia is an industry leading supplier of Discrete, Logic and PowerMOS semiconductors with its focus on the automotive, industrial, computing, consumer and wearable application markets

In data sheets and application notes which still contain NXP or Philips Semiconductors references, use the references to Nexperia, as shown below.

Instead of http://www.nxp.com, http://www.philips.com/ or http://www.semiconductors.philips.com/, use http://www.nexperia.com

Instead of sales.addresses@www.nxp.com or sales.addresses@www.semiconductors.philips.com, use salesaddresses@nexperia.com (email)

Replace the copyright notice at the bottom of each page or elsewhere in the document, depending on the version, as shown below:

- © NXP N.V. (year). All rights reserved or © Koninklijke Philips Electronics N.V. (year). All rights reserved
Should be replaced with:
- © Nexperia B.V. (year). All rights reserved.

If you have any questions related to the data sheet, please contact our nearest sales office via e-mail or telephone (details via salesaddresses@nexperia.com). Thank you for your cooperation and understanding,

Kind regards,
Team Nexperia

74ALVCH16600 18-bit universal bus transceiver (3-State)

FEATURES

- Complies with JEDEC standard no. 8-1A.
- CMOS low power consumption
- Direct interface with TTL levels
- Current drive $\pm 24 \mathrm{~mA}$ at 3.0 V
- All inputs have bus hold circuitry
- Output drive capability 50Ω transmission lines @ $85^{\circ} \mathrm{C}$
- MULTIBYTE ${ }^{\text {TM }}$ flow-through standard pin-out architecture
- Low inductance multiple V_{CC} and ground pins for minimum noise and ground bounce

DESCRIPTION

The 74ALVCH16600 is an 18 -bit universal transceiver featuring non-inverting 3 -State bus compatible outputs in both send and receive directions. Data flow in each direction is controlled by output enable ($\mathrm{OE}_{\mathrm{AB}}$ and $\mathrm{OE}_{\mathrm{BA}}$), latch enable ($\mathrm{LE} \mathrm{E}_{\mathrm{AB}}$ and $\mathrm{LE} \mathrm{E}_{\mathrm{BA}}$), and clock $\left(\overline{\mathrm{CP}}_{\mathrm{AB}}\right.$ and $\left.\mathrm{CP}_{\mathrm{BA}}\right)$ inputs. For A -to- B data flow, the device operates in the transparent mode when $L E_{A B}$ is High. When $L E_{A B}$ is Low, the A data is latched if $\mathrm{CP}_{\mathrm{AB}}$ is held at a High or Low logic level. If $\mathrm{LE} \mathrm{E}_{\mathrm{AB}}$ is Low, the A-bus data is stored in the latch/flip-flop on the High-to-Low transition of $\mathrm{CP}_{\mathrm{AB}}$. When $\mathrm{OE}_{\mathrm{AB}}$ is Low, the outputs are active. When $\overline{O E}_{\mathrm{AB}}$ is High, the outputs are in the high-impedance state. The High clock can be controlled with the clock-enable inputs ($C E_{B A} / \mathrm{CE}_{\mathrm{AB}}$).

Data flow for B-to-A is similar to that of A-to-B but uses $\overline{O E}_{B A}, L E_{B A}$ and $\mathrm{CP}_{\mathrm{BA}}$.

To ensure the high impedance state during power up or power down, $\mathrm{OE}_{\mathrm{BA}}$ and $\mathrm{OE}_{\mathrm{AB}}$ should be tied to V_{CC} through a pullup resistor; the minimum value of the resistor is determined by the current-sinking/current-sourcing capability of the driver.
Active bus hold circuitry is provided to hold unused or floating data inputs at a valid logic level.

QUICK REFERENCE DATA

GND $=0 \mathrm{~V} ; \mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C} ; \mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=2.5 \mathrm{~ns}$

SYMBOL	PARAMETER	CONDITIONS		TYPICAL	UNIT
$\mathrm{t}_{\text {PHL }} / \mathrm{tPLH}$	Propagation delay An, Bn to Bn, An	$\begin{aligned} & V_{C C}=2.5 \mathrm{~V}, C_{L}=30 \mathrm{pF} \\ & V_{C C}=3.3 \mathrm{~V}, C_{L}=50 \mathrm{pF} \end{aligned}$		$\begin{aligned} & 3.1 \\ & 2.8 \end{aligned}$	ns
$\mathrm{C}_{\text {/ }}$	Input/Output capacitance			8.0	pF
C_{1}	Input capacitance			4.0	pF
$\mathrm{C}_{\text {PD }}$	Power dissipation capacitance per latch	$\mathrm{V}_{\mathrm{I}}=\mathrm{GND}$ to $\mathrm{V}_{\mathrm{CC}}{ }^{1}$	Outputs enabled	21	pF
			Outputs disabled	3	

NOTES:

1. $\mathrm{C}_{P D}$ is used to determine the dynamic power dissipation (P_{D} in $\mu \mathrm{W}$):
$P_{D}=C_{P D} \times V_{C C}^{2} \times f_{i}+\Sigma\left(C_{L} \times V_{C C}^{2} \times f_{0}\right)$ where:
$\mathrm{f}_{\mathrm{i}}=$ input frequency in $\mathrm{MHz} ; \mathrm{C}_{\mathrm{L}}=$ output load capacitance in pF ;
$\mathrm{f}_{\mathrm{O}}=$ output frequency in MHz; $\mathrm{V}_{\mathrm{CC}}=$ supply voltage in V ;
$\Sigma\left(C_{L} \times V_{C C}{ }^{2} \times f_{0}\right)=$ sum of outputs.

ORDERING INFORMATION

PACKAGES	TEMPERATURE RANGE	OUTSIDE NORTH AMERICA	DWG NUMBER
$56-$ Pin Plastic TSSOP Type II	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	74 ALVCH 16600 DGG	SOT364-1

PIN CONFIGURATION

PIN DESCRIPTION

PIN NUMBER	SYMBOL	NAME AND FUNCTION
1	$\overline{\mathrm{OE}}_{\mathrm{AB}}$	Output enable A-to-B
2	$\mathrm{LE}_{\mathrm{AB}}$	Latch enable A-to-B
$3,5,6,8,9$, $10,12,13,14$, $15,16,17,19$, $20,21,23,24$, 26	AO to A17	Data inputs/outputs
$4,11,18,25$, $32,39,46,53$	GND	Ground (0V)
$7,22,35,50$	$\mathrm{~V}_{\mathrm{CC}}$	Positive supply voltage
27	$\mathrm{OE}_{\mathrm{BA}}$	Output enable B-to-A
28	$\mathrm{LE}_{\mathrm{BA}}$	Latch enable B-to-A
29	$\mathrm{CE}_{\mathrm{BA}}$	Clock enable B-to-A
30	$\mathrm{CP}_{\mathrm{BA}}$	Clock input B-to-A
$54,52,51,49$, $48,47,45,44$, $43,42,41,40$, $38,37,36,34$, 33,31	BO to B17	Data inputs/outputs
55	$\mathrm{CP}_{\mathrm{AB}}$	Clock input A-to-B
56	$\overline{\mathrm{CE}}_{\mathrm{AB}}$	Clock enable A-to-B

LOGIC SYMBOL

LOGIC DIAGRAM (one section)

FUNCTION TABLE

INPUTS					OUTPUTS	STATUS
$\overline{C E}_{\text {Xx }}$	$\overline{O E}_{\text {xx }}$	$\mathrm{LE}_{\mathrm{XX}}$	$\overline{C P}_{\text {xx }}$	DATA		
X	H	X	X	X	Z	Disabled
$\begin{aligned} & \hline X \\ & X \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{~L} \end{aligned}$	$\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & \hline X \\ & X \end{aligned}$	$\begin{gathered} \mathrm{H} \\ \mathrm{~L} \end{gathered}$	$\underset{\mathrm{L}}{\mathrm{H}}$	Transparent
H	L	L	X	X	NC	Hold
$\begin{aligned} & \mathrm{L} \\ & \mathrm{~L} \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{~L} \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{~L} \end{aligned}$	\downarrow	$\begin{aligned} & \mathrm{h} \\ & \text { । } \end{aligned}$	$\begin{gathered} \mathrm{H} \\ \mathrm{~L} \end{gathered}$	Clock + display
L	L	$\begin{aligned} & \mathrm{L} \\ & \mathrm{~L} \end{aligned}$	$\begin{gathered} \mathrm{H} \\ \mathrm{~L} \end{gathered}$	$\begin{aligned} & \hline X \\ & X \end{aligned}$	NC	Hold

[^0]
LOGIC SYMBOL (IEEE/IEC)

BUSHOLD CIRCUIT

RECOMMENDED OPERATING CONDITIONS

SYMBOL	PARAMETER	CONDITIONS	LIMITS		UNIT
			MIN	MAX	
V_{Cc}	DC supply voltage 2.5 V range (for max. speed performance @ 30 pF output load)		2.3	2.7	V
	DC supply voltage 3.3 V range (for max. speed performance @ 50 pF output load)		3.0	3.6	
V_{1}	DC Input voltage range		0	V_{CC}	V
V_{O}	DC output voltage range		0	V_{CC}	V
$\mathrm{T}_{\text {amb }}$	Operating free-air temperature range		-40	+85	${ }^{\circ} \mathrm{C}$
$\mathrm{t}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}}$	Input rise and fall times	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=2.3 \text { to } 3.0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=3.0 \text { to } 3.6 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \hline 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 20 \\ & 10 \end{aligned}$	ns/V

ABSOLUTE MAXIMUM RATINGS

In accordance with the Absolute Maximum Rating System (IEC 134) Voltages are referenced to GND (ground $=0 \mathrm{~V}$)

SYMBOL	PARAMETER	CONDITIONS	RATING	UNIT
$\mathrm{V}_{\text {CC }}$	DC supply voltage		-0.5 to +4.6	V
IIK	DC input diode current	$\mathrm{V}_{1}<0$	-50	mA
V_{1}	DC input voltage	For control pins ${ }^{1}$	-0.5 to +4.6	V
		For data inputs ${ }^{1}$	-0.5 to $\mathrm{V}_{\text {CC }}+0.5$	
Iok	DC output diode current	$\mathrm{V}_{\mathrm{O}}>\mathrm{V}_{\mathrm{CC}}$ or $\mathrm{V}_{\mathrm{O}}<0$	± 50	mA
V_{O}	DC output voltage	Note 1	-0.5 to $\mathrm{V}_{\mathrm{CC}}+0.5$	V
Io	DC output source or sink current	$\mathrm{V}_{\mathrm{O}}=0$ to V_{CC}	± 50	mA
$\mathrm{I}_{\mathrm{GND}}$, ICC	DC V ${ }_{\text {CC }}$ or GND current		± 100	mA
$\mathrm{T}_{\text {stg }}$	Storage temperature range		-65 to +150	${ }^{\circ} \mathrm{C}$
$\mathrm{P}_{\text {TOT }}$	Power dissipation per package -plastic thin-medium-shrink (TSSOP)	For temperature range: -40 to $+125^{\circ} \mathrm{C}$ above $+55^{\circ} \mathrm{C}$ derate linearly with $8 \mathrm{~mW} / \mathrm{K}$	600	mW

NOTE:

1. The input and output voltage ratings may be exceeded if the input and output current ratings are observed.

DC ELECTRICAL CHARACTERISTICS

Over recommended operating conditions. Voltage are referenced to GND (ground = 0 V).

SYMBOL	PARAMETER	TEST CONDITIONS	LIMITS			UNIT
			Temp $=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$			
			MIN	TYP ${ }^{1}$	MAX	
V_{IH}	HIGH level Input voltage	$\mathrm{V}_{\mathrm{CC}}=2.3$ to 2.7 V	1.7	1.2		V
		$\mathrm{V}_{\mathrm{CC}}=2.7$ to 3.6 V	2.0	1.5		
$\mathrm{V}_{\text {IL }}$	LOW level Input voltage	$\mathrm{V}_{\mathrm{CC}}=2.3$ to 2.7 V		1.2	0.7	V
		$\mathrm{V}_{\mathrm{CC}}=2.7$ to 3.6 V		1.5	0.8	
V_{OH}	HIGH level output voltage	$\mathrm{V}_{\mathrm{CC}}=2.3$ to $3.6 \mathrm{~V} ; \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{IH}}$ or $\mathrm{V}_{\mathrm{IL}} ; \mathrm{I}_{\mathrm{O}}=-100 \mu \mathrm{~A}$	$\mathrm{V}_{C C}-0.2$	V_{CC}		v
		$\mathrm{V}_{\mathrm{CC}}=2.3 \mathrm{~V} ; \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{IH}}$ or $\mathrm{V}_{\mathrm{IL}} ; \mathrm{I}_{\mathrm{O}}=-6 \mathrm{~mA}$	$\mathrm{V}_{\text {CC }-0.3}$	$\mathrm{V}_{\text {CC }-0.08}$		
		$\mathrm{V}_{\mathrm{CC}}=2.3 \mathrm{~V} ; \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{IH}}$ or $\mathrm{V}_{\mathrm{IL}} ; \mathrm{l}_{\mathrm{O}}=-12 \mathrm{~mA}$	$\mathrm{V}_{\mathrm{Cc}}-0.6$	$\mathrm{V}_{\text {cc }-0.26}$		
		$\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V} ; \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{IH}}$ or $\mathrm{V}_{\mathrm{IL}} ; \mathrm{l}_{\mathrm{O}}=-12 \mathrm{~mA}$	$\mathrm{V}_{\text {CC }-0.5}$	$\mathrm{V}_{\text {CC }-0.14}$		
		$\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V} ; \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{IH}}$ or $\mathrm{V}_{\mathrm{IL}} ; \mathrm{I}_{\mathrm{O}}=-12 \mathrm{~mA}$	$\mathrm{V}_{\text {CC }-0.6}$	$\mathrm{V}_{\text {CC }-0.09 ~}$		
		$\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V} ; \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{IH}}$ or $\mathrm{V}_{\mathrm{IL} ;} \mathrm{l} \mathrm{l}=-24 \mathrm{~mA}$	$\mathrm{V}_{\mathrm{CC}}-1.0$	$\mathrm{V}_{\text {CC }-0.28 ~}$		
$\mathrm{V}_{\text {OL }}$	LOW level output voltage	$\mathrm{V}_{\mathrm{CC}}=2.3$ to $3.6 \mathrm{~V} ; \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{IH}}$ or $\mathrm{V}_{\mathrm{IL}} ; \mathrm{l}_{\mathrm{O}}=100 \mu \mathrm{~A}$		GND	0.20	V
		$\mathrm{V}_{\mathrm{CC}}=2.3 \mathrm{~V} ; \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{IH}}$ or $\mathrm{V}_{\mathrm{IL}} ; \mathrm{I}_{\mathrm{O}}=6 \mathrm{~mA}$		0.07	0.40	V
		$\mathrm{V}_{\mathrm{CC}}=2.3 \mathrm{~V} ; \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{IH}}$ or $\mathrm{V}_{\mathrm{IL}} ; \mathrm{I}_{\mathrm{O}}=12 \mathrm{~mA}$		0.15	0.70	V
		$\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V} ; \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{IH}}$ or $\mathrm{V}_{\mathrm{IL}} ; \mathrm{I}_{\mathrm{O}}=12 \mathrm{~mA}$		0.14	0.40	
		$\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V} ; \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{IH}}$ or V_{IL}; $\mathrm{I}_{\mathrm{O}}=24 \mathrm{~mA}$		0.27	0.55	
1	Input leakage current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=2.3 \text { to } 3.6 \mathrm{~V} ; \\ & \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}} \text { or } \mathrm{GND} \end{aligned}$		0.1	5	$\mu \mathrm{A}$
loz	3-State output OFF-state current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=2.7 \text { to } 3.6 \mathrm{~V} ; \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} ; \\ & \mathrm{V}_{\mathrm{O}}=\mathrm{V}_{\mathrm{CC}} \text { or } \mathrm{GND} \\ & \hline \end{aligned}$		0.1	10	$\mu \mathrm{A}$
$I_{\text {cc }}$	Quiescent supply current	$\mathrm{V}_{\mathrm{CC}}=2.3$ to $3.6 \mathrm{~V} ; \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}}$ or GND; $\mathrm{I}_{\mathrm{O}}=0$		0.2	40	$\mu \mathrm{A}$
$\Delta \mathrm{l}_{\mathrm{CC}}$	Additional quiescent supply current	$\mathrm{V}_{\mathrm{CC}}=2.3 \mathrm{~V}$ to $3.6 \mathrm{~V} ; \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}}-0.6 \mathrm{~V} ; \mathrm{I}_{\mathrm{O}}=0$		150	750	$\mu \mathrm{A}$
$\mathrm{I}_{\mathrm{BHL}}$	Bus hold LOW sustaining current	$\mathrm{V}_{\mathrm{CC}}=2.3 \mathrm{~V} ; \mathrm{V}_{\mathrm{I}}=0.7 \mathrm{~V}^{2}$	45	-		$\mu \mathrm{A}$
		$\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V} ; \mathrm{V}_{\mathrm{I}}=0.8 \mathrm{~V}^{2}$	75	150		
$\mathrm{I}_{\text {BHH }}$	Bus hold HIGH sustaining current	$\mathrm{V}_{\mathrm{CC}}=2.3 \mathrm{~V} ; \mathrm{V}_{\mathrm{I}}=1.7 \mathrm{~V}^{2}$	-45			$\mu \mathrm{A}$
		$\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V} ; \mathrm{V}_{\mathrm{I}}=2.0 \mathrm{~V}^{2}$	-75	-175		
$\mathrm{I}_{\text {BHLO }}$	Bus hold LOW overdrive current	$\mathrm{V}_{\mathrm{CC}}=3.6 \mathrm{~V}^{2}$	500			$\mu \mathrm{A}$
$\mathrm{I}_{\text {BHHO }}$	Bus hold HIGH overdrive current	$\mathrm{V}_{\mathrm{CC}}=3.6 \mathrm{~V}^{2}$	-500			$\mu \mathrm{A}$

NOTES:

1. All typical values are at $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$.
2. Valid for data inputs of bus hold parts.

AC CHARACTERISTICS FOR $\mathrm{V}_{\mathrm{CC}}=2.3 \mathrm{~V}$ TO 2.7V RANGE
GND $=0 \mathrm{~V} ; \mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}} \leq 2.0 \mathrm{~ns} ; \mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}$

SYMBOL	PARAMETER	WAVEFORM	LIMITS			UNIT
			$\mathrm{V}_{\mathrm{CC}}=2.5 \mathrm{~V} \pm 0.2 \mathrm{~V}$			
			MIN	TYP ${ }^{1}$	MAX	
tPHL/tPLH	Propagation delay An, Bn to Bn, An	1,2	1.0	3.1	5.2	ns
	Propagation delay $\mathrm{LE}_{\mathrm{AB}}, \mathrm{LE}_{\mathrm{BA}}$ to Bn, An		1.0	3.6	6.2	
	Propagation delay $\overline{\mathrm{CP}}_{\mathrm{AB}}, \mathrm{CP}_{\mathrm{BA}}$ to Bn, An		1.0	3.8	7.3	
$t_{\text {PzH }} /$ tpZL	3-State output enable time $\mathrm{OE}_{\mathrm{BA}}, \mathrm{OE}_{\mathrm{AB}}$ to An, Bn	3	1.0	3.1	6.5	ns
$\mathrm{t}_{\text {PHZ }} /$ tpLZ	3-State output enable time $\mathrm{OE}_{\mathrm{BA}}, \mathrm{OE}_{\mathrm{AB}}$ to An, Bn	3	1.0	2.8	5.1	ns
tw	Pulse width HIGH $L_{E A B}, E_{B A}$	2	3.3	1.6	-	ns
	Pulse width HIGH or LOW $\mathrm{CP}_{\mathrm{AB}}, \mathrm{CP}_{\mathrm{BA}}$		3.3	2.0	-	
tsu	Set-up time An, Bn to $\overline{\mathrm{CP}}_{\mathrm{AB}}, \overline{\mathrm{CP}}_{\mathrm{BA}}$	4	1.3	-0.1	-	ns
	Set-up time An, Bn to $L^{A B}, L E_{B A}$	4	1.2	0.1	-	
	Set-up time $\mathrm{CE}_{\mathrm{AB}}, \mathrm{CE}_{\mathrm{BA}}$ to $\overline{\mathrm{CP}}_{\mathrm{AB}}, \overline{\mathrm{CP}}_{\mathrm{BA}}$	4	0.7	-0.4	-	
$t_{\text {h }}$	Hold time An, Bn to $\overline{\mathrm{CP}}_{\mathrm{AB}}, \overline{\mathrm{CP}}_{\mathrm{BA}}$	4	1.5	0.6	-	ns
	Hold time An, Bn to $\mathrm{LE}_{\mathrm{AB}}, \mathrm{LE}_{\mathrm{BA}}$		1.2	0.6	-	
	Hold time $\mathrm{CE}_{\mathrm{AB}}, \mathrm{CE}_{\mathrm{BA}}$ to $\overline{\mathrm{CP}}_{\mathrm{AB}}, \overline{\mathrm{CP}}_{\mathrm{BA}}$	4	1.4	2.0	-	
$\mathrm{f}_{\text {MAX }}$	Maximum clock frequency		150	335	-	MHz

NOTE:

1. All typical values are at $\mathrm{V}_{\mathrm{CC}}=2.5 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$.

AC CHARACTERISTICS FOR $\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}$ TO 3.6V RANGE AND $\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}$
GND $=0 \mathrm{~V} ; \mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=2.5 \mathrm{~ns} ; \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$

SYMBOL	PARAMETER	WAVEFORM	LIMITS						UNIT
			$\mathrm{V}_{\mathrm{cc}}=3.3 \mathrm{~V} \pm 0.3 \mathrm{~V}$			$\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}$			
			MIN	TYP ${ }^{1}$	MAX	MIN	TYP	MAX	
tPhL $^{\text {/PPLH }}$	Propagation delay An, Bn to Bn, An	1, 2	1.0	2.8	4.2		3.1	4.7	ns
	Propagation delay $\mathrm{LE}_{\mathrm{AB}}, \mathrm{LE}_{\mathrm{BA}}$ to Bn, An		1.0	3.1	4.9		3.4	5.5	
	Propagation delay $\overline{\mathrm{CP}}_{\mathrm{AB}}, \mathrm{CP}_{\mathrm{BA}}$ to Bn, An		1.3	2.9	5.7		3.8	6.8	
$\mathrm{t}_{\text {PZH }} / \mathrm{tPZL}$	3-State output enable time $\mathrm{OE}_{\mathrm{BA}}$ to An	3	1.1	2.8	5.2		3.3	6.3	ns
tPhz/tpLZ	3-State output disable time $\mathrm{OE}_{\mathrm{BA}}$ to An	3	1.2	3.2	4.4		3.3	4.7	ns
tw	LE pulse width $\mathrm{LE}_{\mathrm{AB}}, \mathrm{LE}_{\mathrm{BA}}$ to $\overline{\mathrm{CP}}_{\mathrm{AB}}, \mathrm{CP}_{\mathrm{BA}}$	2	3.3	1.0		3.3	1.0		ns
	LE pulse width HIGH or LOW $\overline{C P}_{A B}, \overline{C P}_{B A}$		3.3	1.1		3.3	1.4		
tsu	Set-up time An, Bn to $\mathrm{CP}_{\mathrm{AB}}, \overline{\mathrm{CP}}_{\mathrm{BA}}$	4	1.2	-0.1		1.3	-0.4		ns
	Set-up time An, $B n$ to $L E_{A B}, L E_{B A}$	4	1.1	0.3		1.1	-0.2		
	Set-up time $\mathrm{CE}_{\mathrm{AB}}, \mathrm{CE}_{\mathrm{BA}}$ to $\overline{\mathrm{CP}}_{\mathrm{AB}}, \overline{\mathrm{CP}}_{\mathrm{BA}}$	4	0.8	-0.2		0.7	-0.7		
$t_{\text {h }}$	Hold time An, Bn to $\overline{\mathrm{CP}}_{\mathrm{AB}}, \overline{\mathrm{CP}}_{\mathrm{BA}}$	4	1.5	0.4		1.8	0.4		ns
	Hold time An, Bn to $\mathrm{LE}_{\mathrm{AB}}, \mathrm{LE}_{\mathrm{BA}}$		1.3	0.1		1.6	0.1		
	Hold time $\mathrm{CE}_{\mathrm{AB}}, \mathrm{CE}_{\mathrm{BA}}$ to $\overline{\mathrm{CP}}_{\mathrm{AB}}, \overline{\mathrm{CP}}_{\mathrm{BA}}$	4	1.4	0.4		1.7	0.6		
$f_{\text {MAX }}$	Maximum clock frequency		150	362		150	350		MHz

NOTE:

1. All typical values are at $\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$.

AC WAVEFORMS

$\mathrm{V}_{\mathrm{Cc}}=2.3$ TO 2.7 V RANGE

1. $\mathrm{V}_{\mathrm{M}}=0.5 \mathrm{~V}$
2. $\mathrm{V}_{\mathrm{X}}=\mathrm{V}_{\mathrm{OL}}+0.15 \mathrm{~V}$
3. $\mathrm{V}_{\mathrm{Y}}=\mathrm{V}_{\mathrm{OH}}-0.15 \mathrm{~V}$
4. $V_{I}=V_{C C}$
5. V_{OL} and V_{OH} are the typical output voltage drop that occur with the output load.
$\mathrm{V}_{\mathrm{CC}}=3.0$ TO 3.6 V RANGE AND $\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}$
6. $\mathrm{V}_{\mathrm{M}}=1.5 \mathrm{~V}$
7. $\mathrm{V}_{\mathrm{X}}=\mathrm{V}_{\mathrm{OL}}+0.3 \mathrm{~V}$
8. $\mathrm{V}_{\mathrm{Y}}=\mathrm{V}_{\mathrm{OH}}-0.3 \mathrm{~V}$
9. $\mathrm{V}_{\mathrm{I}}=2.7 \mathrm{~V}$
10. V_{OL} and V_{OH} are the typical output voltage drop that occur with the output load.

Waveform 1. Input (An, Bn) to output (Bn, An) propagation delay times

Waveform 2. Latch enable input ($\mathrm{LE}_{\mathrm{AB}}, \mathrm{LE}_{\mathrm{BA}}$) and clock pulse input $\left(\mathrm{CP}_{\mathrm{AB}}, \mathrm{CP}_{\mathrm{BA}}\right)$ to output (An, Bn) propagation delays and latch enable pulse width

Waveform 3. 3-State enable and disable times

Waveform 4. Data set-up and hold times for the An and Bn inputs to the $\mathrm{LE}_{\mathrm{AB}}, \mathrm{LE}_{\mathrm{BA}}, \mathrm{CP}_{\mathrm{AB}}$ and $\mathrm{CP}_{\mathrm{BA}}$ inputs

TEST CIRCUIT

Load circuitry for switching times

DIMENSIONS (mm are the original dimensions).

UNIT	\mathbf{A} $\mathbf{m a x}$.	$\mathbf{A}_{\mathbf{1}}$	$\mathbf{A}_{\mathbf{2}}$	$\mathbf{A}_{\mathbf{3}}$	$\mathbf{b}_{\mathbf{p}}$	\mathbf{c}	$\mathbf{D}^{(1)}$	$\mathbf{E}^{(2)}$	\mathbf{e}	$\mathbf{H}_{\mathbf{E}}$	\mathbf{L}	$\mathbf{L}_{\mathbf{p}}$	\mathbf{Q}	\mathbf{v}	\mathbf{w}	\mathbf{y}	\mathbf{Z}
mm	1.2	0.15	1.05	0.25	0.28	0.2	14.1	6.2	0.5	8.3	1.0	0.8	0.50	0.25	0.08	0.1	0.5
0.0	0.85	0.17	0.1	13.9	6.0	8^{0}											
0^{0}																	

Notes

1. Plastic or metal protrusions of 0.15 mm maximum per side are not included.
2. Plastic interlead protrusions of 0.25 mm maximum per side are not included

NOTES

DEFINITIONS		
Data Sheet Identification	Product Status	Definition
Objective Specification	Formative or in Design	This data sheet contains the design target or goal specifications for product development. Specifications may change in any manner without notice.
Preliminary Specification	Preproduction Product	This data sheet contains preliminary data, and supplementary data will be published at a later date. Philips Semiconductors reserves the right to make changes at any time without notice in order to improve design and supply the best possible product.
Product Specification	Full Production	This data sheet contains Final Specifications. Philips Semiconductors reserves the right to make changes at any time without notice, in order to improve design and supply the best possible product.

Philips Semiconductors and Philips Electronics North America Corporation reserve the right to make changes, without notice, in the products, including circuits, standard cells, and/or software, described or contained herein in order to improve design and/or performance. Philips Semiconductors assumes no responsibility or liability for the use of any of these products, conveys no license or title under any patent, copyright, or mask work right to these products, and makes no representations or warranties that these products are free from patent, copyright, or mask work right infringement, unless otherwise specified. Applications that are described herein for any of these products are for illustrative purposes only. Philips Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

LIFE SUPPORT APPLICATIONS
Philips Semiconductors and Philips Electronics North America Corporation Products are not designed for use in life support appliances, devices, or systems where malfunction of a Philips Semiconductors and Philips Electronics North America Corporation Product can reasonably be expected to result in a personal injury. Philips Semiconductors and Philips Electronics North America Corporation customers using or selling Philips Semiconductors and Philips Electronics North America Corporation Products for use in such applications do so at their own risk and agree to fully indemnify Philips Semiconductors and Philips Electronics North America Corporation for any damages resulting from such improper use or sale.

Philips Semiconductors

811 East Arques Avenue
P.O. Box 3409

Sunnyvale, California 94088-3409
Telephone 800-234-7381
© Copyright Philips Electronics North America Corporation 1998 All rights reserved. Printed in U.S.A.

Date of release: 06-98
Document order number:
9397-750-04799

Let's make things better.

PHILIPS

[^0]: $X X=A B$ for A-to- B direction, BA for B -to-A direction
 $\mathrm{H}=\mathrm{HIGH}$ voltage level
 L = LOW voltage level
 $h=$ HIGH state must be present one setup time before the LOW-to-HIGH transition of $\overline{C P}_{X X}$
 I = LOW state must be present one setup time before the LOW-to-HIGH transition of $\mathrm{CP}_{\mathrm{XX}}$
 $X=$ Don't care
 $\downarrow=$ HIGH-to-LOW level transition
 NC = No change
 $\mathrm{Z}=$ High impedance "off" state

