Very Low Forward Voltage Trench-based Schottky Rectifier

Exceptionally Low $V_F = 0.53 \text{ V}$ at $I_F = 5 \text{ A}$

Features

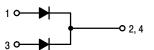
- Fine Lithography Trench-based Schottky Technology for Very Low Forward Voltage and Low Leakage
- Fast Switching with Exceptional Temperature Stability
- Low Power Loss and Lower Operating Temperature
- Higher Efficiency for Achieving Regulatory Compliance
- Low Thermal Resistance
- High Surge Capability
- These Devices are Pb-Free and Halogen Free/BFR Free

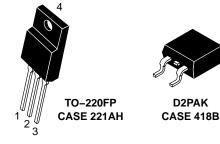
Typical Applications

- Switching Power Supplies including Telecom AC to DC Power Stages, LED Lighting and ATX
- High Voltage DC-DC Converters
- Freewheeling and OR-ing Diodes
- Output Rectifier in Welding Power Supplies
- Industrial Automation

Mechanical Characteristics

- Case: Epoxy, Molded
- Epoxy Meets Flammability Rating UL 94–0 @ 0.125 in
- Finish: All External Surfaces Corrosion Resistant and Terminal Leads are Readily Solderable
- Lead Temperature for Soldering Purposes: 260°C Maximum for 10 sec




ON Semiconductor®

http://onsemi.com

VERY LOW FORWARD
VOLTAGE, LOW LEAKAGE
SCHOTTKY BARRIER
RECTIFIERS 40 AMPERES,
200 VOLTS

PIN CONNECTIONS

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 6 of this data sheet.

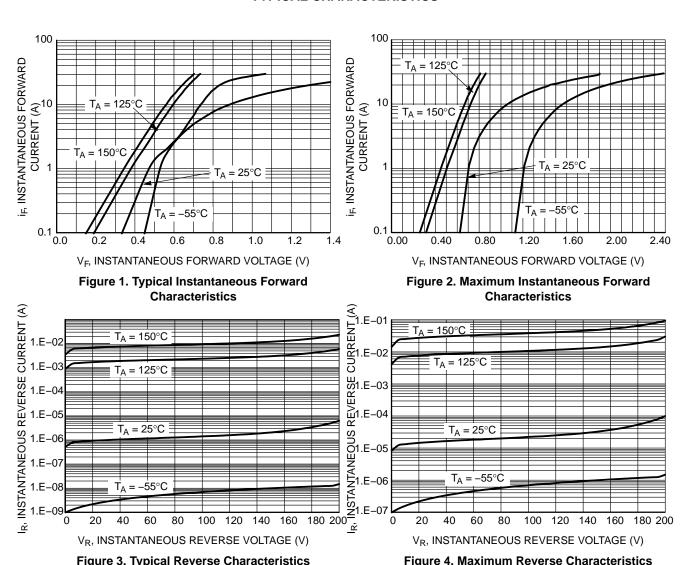
This document contains information on some products that are still under development. ON Semiconductor reserves the right to change or discontinue these products without notice.

MAXIMUM RATINGS

Rating	Symbol	Value	Unit	
Peak Repetitive Reverse Voltage Working Peak Reverse Voltage DC Blocking Voltage	V _{RRM} V _{RWM} V _R	200	V	
Average Rectified Forward Current (Rated V_R , $T_C = 125^{\circ}C$) NTSB40200CTG Per device (Rated V_R , $T_C = 130^{\circ}C$) NTSB40200CTG Per diode (Rated V_R , $T_C = 65^{\circ}C$) NTSJ40200CTG Per device (Rated V_R , $T_C = 42^{\circ}C$) NTSJ40200CTG Per diode	I _{F(AV)}	40 20 20 20 20	A	
Peak Repetitive Forward Current (Rated V_R , Square Wave, 20 kHz, T_C = 115°C) NTSB40200CTG Per device (Rated V_R , Square Wave, 20 kHz, T_C = 125°C) NTSB40200CTG Per diode (Rated V_R , Square Wave, 20 kHz, T_C = 40°C) NTSJ40200CTG Per device (Rated V_R , Square Wave, 20 kHz, T_C = 25°C) NTSJ40200CTG Per diode	I _{FRM}	80 40 40 40	A	
Nonrepetitive Peak Surge Current (Surge applied at rated load conditions halfwave, single phase, 60 Hz)	I _{FSM}	250	А	
Operating Junction Temperature	T _J	-55 to +150	°C	
Storage Temperature		-55 to +150	°C	
ESD Rating (Human Body Model)		3A		
ESD Rating (Machine Model)		M4		

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

THERMAL CHARACTERISTICS


Rating		NTSB40200CTG	NTSJ40200CTG	Unit
Typical Thermal Resistance Junction-to-Case Per Diode Junction-to-Case Per Device	$R_{ heta JC}$	1.29 0.79	6.94 6.05	°C/W
Junction-to-Ambient Per Device	R_{\thetaJA}	40	105	

ELECTRICAL CHARACTERISTICS

Rating	Symbol	Тур	Max	Unit
Instantaneous Forward Voltage (Note 1)	V _F			V
$(I_F = 5 \text{ A}, T_J = 25^{\circ}\text{C})$	-	0.68	_	
$(I_F = 10 \text{ A}, T_J = 25^{\circ}\text{C})$		0.74	_	
$(I_F = 15 \text{ A}, T_J = 25^{\circ}\text{C})$		0.79	_	
$(I_F = 20 \text{ A}, T_J = 25^{\circ}\text{C})$		0.84	1.45	
(I _F = 5 A, T _{.I} = 125°C)		0.53	_	
$(I_F = 10 \text{ A}, T_J = 125^{\circ}\text{C})$		0.60	_	
$(I_F = 15 \text{ A}, T_J = 125^{\circ}\text{C})$		0.64	_	
$(I_F = 20 \text{ A}, T_J = 125^{\circ}\text{C})$		0.68	0.80	
Instantaneous Reverse Current (Note 1)	I _R			
$(V_R = 180 \text{ V}, T_J = 25^{\circ}\text{C})$.,	3 5	_	μΑ
(Rated dc Voltage, $T_J = 25^{\circ}C$)		5	100	μA
$(V_R = 180 \text{ V}, T_A = 125^{\circ}\text{C})$		5.3	_	mA
(Rated dc Voltage, T ₁ = 125°C)		7	30	mA

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions. 1. Pulse Test: Pulse Width = $300 \,\mu$ s, Duty Cycle $\leq 2.0\%$

TYPICAL CHARACTERISTICS

V_R, INSTANTANEOUS REVERSE VOLTAGE (V) Figure 3. Typical Reverse Characteristics

100 120 140 160

80

 $T_A = -55^{\circ}C$

0

60

V_R, INSTANTANEOUS REVERSE VOLTAGE (V) Figure 4. Maximum Reverse Characteristics

100

120 140 160 180 200

80

40

20

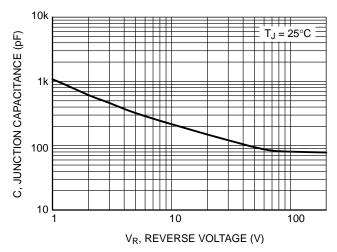


Figure 5. Typical Junction Capacitance

TYPICAL CHARACTERISTICS

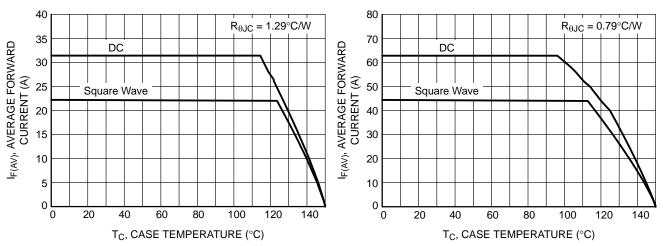


Figure 6. Current Derating per Diode (NTSB40200CT)

Figure 7. Current Derating per Device (NTSB40200CT)

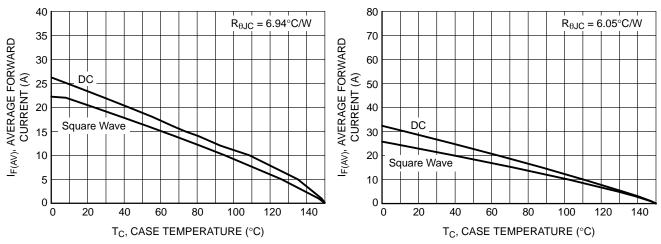


Figure 8. Current Derating per Diode (NTSJ40200CTG)

Figure 9. Current Derating per Device (NTSJ40200CTG)

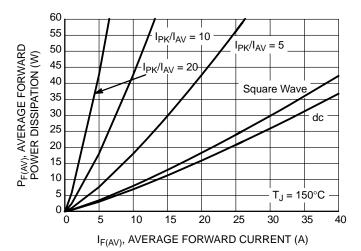


Figure 10. Forward Power Dissipation

TYPICAL CHARACTERISTICS

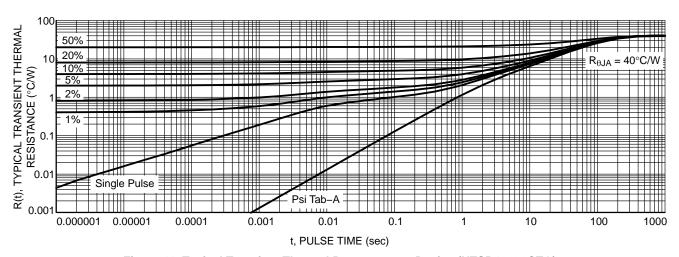


Figure 11. Typical Transient Thermal Response per Device (NTSB40200CTG)

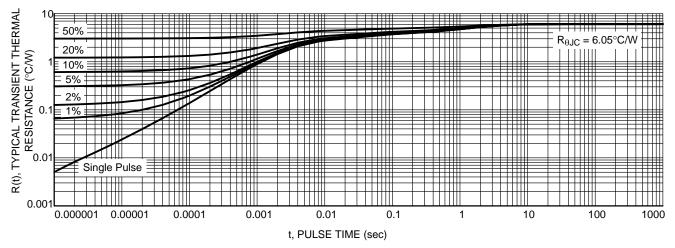
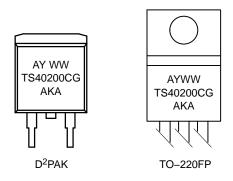



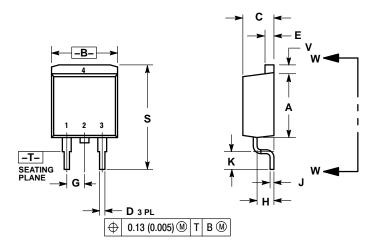
Figure 12. Typical Transient Thermal Response per Device (NTSJ40200CTG)

ORDERING INFORMATION

Device	Package	Shipping
NTSB40200CTG	D ² PAK (Pb-Free)	50 Units / Rail
NTSB40200CTT4G	D ² PAK (Pb-Free)	800 / Tape & Reel
NTSJ40200CTG (In Development)	TO-220FP (Halide-Free)	50 Units / Rail

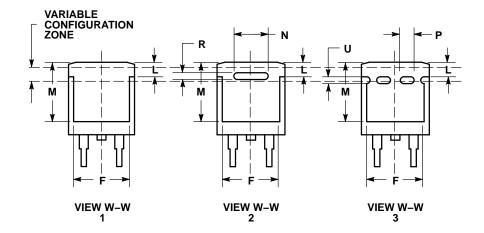
MARKING DIAGRAMS

A = Assembly Location

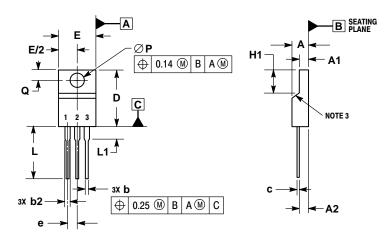

Y = Year

WW = Work Week

AKA = Polarity Designator G = Pb-Free Package


PACKAGE DIMENSIONS

D²PAK 3 CASE 418B-04 ISSUE K


- NOTES:
 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
 2. CONTROLLING DIMENSION: INCH.
 3. 418B-01 THRU 418B-03 OBSOLETE, NEW STANDARD 418B-04.

	INCHES		MILLIN	IETERS
DIM	MIN	MAX	MIN	MAX
Α	0.340	0.380	8.64	9.65
В	0.380	0.405	9.65	10.29
C	0.160	0.190	4.06	4.83
D	0.020	0.035	0.51	0.89
Е	0.045	0.055	1.14	1.40
F	0.310	0.350	7.87	8.89
G	0.100 BSC		2.54 BSC	
Н	0.080	0.110	2.03	2.79
7	0.018	0.025	0.46	0.64
K	0.090	0.110	2.29	2.79
L	0.052	0.072	1.32	1.83
М	0.280	0.320	7.11	8.13
N	0.197	REF	5.00	REF
Р	0.079	REF	2.00	REF
R	0.039	REF	0.99	REF
S	0.575	0.625	14.60	15.88
٧	0.045	0.055	1.14	1.40

PACKAGE DIMENSIONS

TO-220 FULLPACK, 3-LEAD CASE 221AH ISSUE D

NOTES:

- 1. DIMENSIONING AND TOLERANCING PER ASME Y14 5M 1994

- Y14.5M, 1994.
 CONTROLLING DIMENSION: MILLIMETERS.
 CONTOUR UNCONTROLLED IN THIS AREA.
 DIMENSIONS D AND E DO NOT INCLUDE MOLD FLASH
 AND GATE PROTRUSIONS. MOLD FLASH AND GATE PROTRUSIONS NOT TO EXCEED 0.13 PER SIDE. THESE DIMENSIONS ARE TO BE MEASURED AT OUTERMOST EXTREME OF THE PLASTIC BODY.
- 5. DIMENSION b2 DOES NOT INCLUDE DAMBAR PROTRUSION. LEAD WIDTH INCLUDING PROTRUSION SHALL NOT EXCEED 2.00.

	MILLIMETERS		
DIM	MIN	MAX	
Α	4.30	4.70	
A1	2.50	2.90	
A2	2.50	2.70	
b	0.54	0.84	
b2	1.10	1.40	
C	0.49	0.79	
D	14.70	15.30	
E	9.70	10.30	
е	2.54 BSC		
H1	6.70	7.10	
L	12.70	14.73	
L1		2.10	
Р	3.00	3.40	
Q	2.80	3.20	

ON Semiconductor and in are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of SCILLC's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com

N. American Technical Support: 800-282-9855 Toll Free

Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910

Japan Customer Focus Center Phone: 81-3-5817-1050

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative